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This paper focuses on the dynamic responses of a flexible deployment system that has a
central rigid body and four articulated flexible beams and undergoes locking impact. A
hybrid finite segment/finite element model and an experiment are presented for the deploy-
ment system. The flexible beam components in the system are modelled with the finite
segments connected by massless beam elements, wherein the finite segments describe the
inertia of the large rotation flexible beam and the massless elastic elements describe the elas-
ticity of the flexible beam by taking the advantage of small deformation in the relative
co-ordinate system. To model the internal impacts in the articulate joints due to clearances,
a continuous contact force model of locking joint is also proposed. The governing
differential–algebraic equations of the system are established by the Newton–Euler method
with Lagrange multipliers and are solved with the method of generalized co-ordinate
partitioning. To accelerate the numerical integration, a ‘‘longitudinal constraint’’ is
suggested to alleviate the stiff problem of the dynamic equations. In addition, a physical
model of the deployment system is constructed. The deployment is released by the
compressed springs in the joints. A position measuring system of linear CCD cameras is
used to measure the large displacement of the system. Correlations between the
mathematical model and the experiments are also presented. Reasonable results are
obtained.

# 2002 Elsevier Science Ltd. All rights reserved.
1. INTRODUCTION

The deployment system is generally characterized by the coupled rigid-body motion and
the elastic vibration, and the dynamics of which is further complicated by the internal
impacts in the connecting joints of the system. The modelling of such system involves two
main aspects, namely the modelling of the elastic body with large displacement and that of
the impacts in the joints.

The assumed mode method has dominated the history of dynamics of structures for a
long time. It generally involves few degrees of freedom and gives clear physical
explanation. So this method has been introduced to the fields of multi-body systems.
However, it is devoid of the flexibility for describing complicated systems with complex
boundary or time-varying boundary conditions. With the advent of modern computer
technology and development of computational mechanics, the finite element method has
been widely used in the fields of multi-body system [1–5]. On the other hand, Huston and
Connelly [6–8] developed the finite segment approach for elastic slender beams in multi-
body system, in which each beam is modelled as a collection of rigid segments connected
0022-460X/02/$35.00 # 2002 Elsevier Science Ltd. All rights reserved.
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by linear springs and dampers. In this method, the coupled problem of the rigid-body
motion and flexible vibrations is transformed into that of a rigid-multi-body system. Based
on finite segment approach, Zakhariev [9] suggested a method of finite elements in relative
co-ordinates for the solution of non-linear elastic problems of large deformation. In the
finite segment approach, the large deformation of the flexible structure could be
represented by the small deformation in the relative co-ordinate system and rigid-body
motion of the segment. As a result, the geometric non-linear and non-linear inertia effects
are naturally taken into account.

The impact problems in multi-body systems have drawn the attentions of many
researchers [10–17]. Khulief and Shabana [10–12] investigated the impact responses in a
constrained mechanical system with flexible components through the momentum balance
method, in which a set of impulse–momentum relations is solved to account for the jump
discontinuities in velocity. Nagaraj et al. [13] applied the same method to a two-link
flexible system undergoing locking. On the other hand, Dubowsky and Gardner [14]
developed an ‘‘impact-beam’’ model, wherein the impact force was modelled by a force-
displacement law with the material compliance. Hunt and Grossley [15] presented a
contact force model by the Hertz force displacement law, and suggested a hysteresis
damping. Lee and Wang [16] introduced a hysteresis damping function that characterizes
the speed and load-dependent nature of damping. Yigit et al. [17] used the model
developed by Lee and Wang for the dynamics of a radially rotating beam with impact and
excellent agreement was found between the simulation and the experiments. Compared
with the momentum balance method, the continuous contact force model can give
information concerning the contact force. However, it requires additional parameters to
be determined.

In this paper, the hybrid method of finite segment and beam element together with
continuous contact force model of impact are used for dynamic modelling of a deployment
system with a central rigid body and four articulated flexible beams. A brief description of
the flexible deployment system is given in section 2 and the dynamic equations of flexible
multi-body system with internal impact are established in section 3. A ‘‘longitudinal
constraint’’ is suggested to decrease the stiffness of the equations in section 4. The
simulation results of the deployment system are presented in section 5. Finally, the
experimental set-up and results are presented and are compared with numerical
simulation.

2. DESCRIPTION OF THE FLEXIBLE DEPLOYMENT SYSTEM

The deployment system investigated in this paper is shown in Figure 1. It includes a
central rigid body and four articulated flexible beams. The system is folded into an initial
position, as shown in Figure 1(a), and is expanded by releasing the compressed torsion
springs in the joints. In the deployment, the beams experience both large rigid-body
motions and elastic vibrations, as shown in Figure 1(a)–1(d). When joints are locked at
appropriate positions, the impacts in the joints will induce elastic vibrations.

3. DYNAMIC MODELLING OF THE FLEXIBLE DEPLOYMENT SYSTEM

The purpose of this section is to establish the dynamic equations of the deployment
system described in the above section. Section 3.1 deals with the finite segment modelling
of the flexible beams that experience large rigid-body motions. Section 3.2 introduces the



Figure 1. Schematic representation of motion of four-beam flexible system with a central rigid body: (a) initial
configuration; (b) initial movement; (c) motion after first locking; (d) end configuration.
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mathematical model of the locking impacts in the joints and section 3.3 establishes the
dynamic equations of motion of the flexible deployment system.

3.1. MODELLING OF THE FLEXIBLE BEAMS

The modelling of the flexible beams includes two parts, namely the inertial modelling
with the finite segment and the elastic modelling with the finite element.

3.1.1. The inertia modelling

In the finite segment approach, the flexible beam is discretized into a number of rigid
segments connected by beam elements, as shown in Figure 2.

The virtual work equation for the discrete flexible beam s can be expressed as

dqTs Ms .qqs �Qs½ � ¼ 0; ð1Þ

where Ms is the mass matrix, qs is the generalized co-ordinate vector and Qs is the
corresponding generalized force vector, which are defined as follows:

qs ¼ qTs1; q
T
s2; . . . ; q

T
sn

� �
; Ms ¼ diag Ms1;Ms2; . . . ; Msnð Þ; Qs ¼ QT

s1;Q
T
s2; . . . ; Q

T
sn

� �
; ð2Þ

where qsi ði ¼ 1; 2 � � � ; nÞ is the generalized co-ordinate of the ith segment. Msi is the
generalized mass matrix of the ith segment

Msi ¼ diagðmsiI3; J’siÞ; i ¼ 1; 2; � � � ; n; ð3Þ



Figure 2. Finite segment model of beam like structure: (a) continuous flexible system; (b) discrete model by
overlapped finite segments and elastic beam element.
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where msi is the mass of the segment i; J’si the inertia tensor of the segment about its center
of mass and I3 is the identity matrix of 3� 3.Qsi ði ¼ 1; 2; � � � ; nÞ is generalized force of the
segment including the contributions from the connecting beam elements, which are
introduced in the following section.

3.1.2. The elasticity modelling

To account the elastic energy in the deformed flexible beam, the beam element is
introduced. Consider two neighboring segments Bi and Bj in Figure 3, BiXiYi and BjXjYj

are, respectively, the body frames with the origin at the mass center of the two segments.
The element BiBj is the elastic beam from Bi to Bj; at both ends of which, the beam has
displacements consisting of segments Bi and Bj; respectively, see Figure 3. The kinetic
energy of the beam is expressed in terms of the rigid segments and the elastic energy is
described by the element. For the sake of simplicity, the two segments with equal length
are considered.

Let Oe be the reference frame of the beam element. Its global position vector re and
angles ye between the Xe and X axis are

re ¼ ðri þ rjÞ=2; ye ¼ ðyi þ yjÞ=2; ð4Þ
where yi and yj are, respectively, the angles Xi and Xj with respect to the X-axis. The global
position vectors and angles of the points Bi and Bj with respect to the point Oe are

ai ¼ rpi � re; aj ¼ rpj � re; ye
i ¼ yi � ye; ye

j ¼ yj � ye: ð5Þ

In the co-ordinate system of the beam element, the above vectors are

ae
i ¼ RT

e ai ¼
xe

i

ye
i

( )
; ae

j ¼ RT
e aj ¼

xe
j

ye
j

( )
; ð6Þ

where Re is the transformation matrix from the beam element to global co-ordinate
system.

For the beam element BiBj shown in Figure 3, let l; E and I be, respectively, the length,
elastic coefficients and area moment of inertia. Considering lateral deformation of the



Figure 3. Two neighboring segments and the connecting beam element.
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fictitious element in the co-ordinate of Oe; the following equations and bound conditions
are satisfied [18]:

EI
d4ye

dx
¼ 0;

ye ¼ ye
i ;

dye

dxe
¼ ye

i while xe ¼ �l=2;

ye ¼ ye
j ;

dye

dxe
¼ ye

j while xe ¼ �l=2: ð7Þ

As in the conventional finite element method, the force–displacement relations of the beam
element can be denoted as

Pe
si

Pe
sj

( )
¼ Ke

de
si

de
sj

( )
; ð8Þ

where

de
si ¼

xe
i

ye
i

ye
i

8><
>:

9>=
>;; de

sj ¼
xe

j

ye
j

ye
j

8>><
>>:

9>>=
>>;; ð9Þ

Pe
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F e
xi

F e
yi

Me
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>;; Pe
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Fe

xj

F e
yj

Me
j

8>><
>>:

9>>=
>>;: ð10Þ

When the relative deformation of the beam element is small, it can be described by the
linear theories. With the cubic Hermite interpolation functions for the beam element [18]
in the interval ð�1=2; 1=2Þ

j1 ¼ 1
2
� 3

2
xþ 2x3; j2 ¼ lð1

8
� 1

4
x� 1

2
x2 þ x3Þ;

j3 ¼ 1
2
þ 3

2
x� 2x3; j4 ¼ lð�1

8
� 1

4
xþ 1

2
x2 þ x3Þ; ð11Þ
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where x ¼ x=l; the stiffness matrix of the element can be obtained as

Ke ¼

EA

l
0 0 � EA

l
0 0

12EI

l3
6EI

l2
0 � 12EI

l3
6EI

l2

4EI

l
0 � 6EI

l2
2EI

l

sym
EA

l
0 0

12EI

l3
� 6EI

l2

4EI

l

2
6666666666666666664

3
7777777777777777775

: ð12Þ

The generalized force can be transformed into the global system

Qe
si ¼ RePe

si;

Qe
sj ¼ RePe

sj : ð13Þ

3.2. MATHEMATICAL MODEL FOR LOCKING IMPACTS DUE TO CLEARANCE

The locking joint with clearance is shown in Figure 4. ya and yb denote the clearance
angles. When y4y1; the beam enters the region of locking, and a serial of impact might
take place. While the condition ya > y > �yb is satisfied, the beam is in the clearance and
is free from impacts. When condition y5ya or y4� yb is satisfied, the impact takes place.

The continuous contact force model with hysteresis damping in reference [16] is used for
the locking joint. The original contact model is for linear contacts. In this paper, a contact
model for angular contacts is presented.

The continuous contact force model in reference [15] takes the following form:

f ¼ Kd3=2 þ D’dd; ð14Þ

where d is the local relative penetration between the surface of the two bodies. The
generalized parameter K depends on the material properties and the radii (Ri; Rj) of the
two spheres

K ¼ 4

3pðhi þ hjÞ
RiRj

Ri þ Rj

� �1=2
; ð15Þ

where the material parameters hi and hj are

hl ¼
1� m2l
pEl

; l ¼ i; j: ð16Þ

Where ml and El are, respectively, the Poission ratio and Young’s modulus associated with
each body.

A hysteresis form for damping coefficient proposed by Lee and Wang [16] is

D ¼ CTðdÞ; ð17Þ

where the damping function is

TðdÞ ¼ ½ðdþ dj jÞ=2d� exp½fðd� eÞ � d� ej jgðQ=eÞ�; ð18Þ



Figure 4. The sketch for locking joint with clearance.
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in which e defines a transition zone, and Q is a parameter specifying the shape of the curve
within the transition zone. The damping coefficient

C ¼ 2Mon

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðln eÞ2=½ðln eÞ2 þ p2�

q
; ð19Þ

where e is the coefficient of restitution appropriate for the initial impact velocity, and
on ¼

ffiffiffiffiffiffiffiffiffiffiffi
k=M

p
is the natural frequency of the beam on the linear spring.

In the case of revolute locking joint, which has the angular form, the contact force
model has to be transformed into the angular form. As shown in Figure 4, let yc be the
angular form of the indentation d; the following equation is obtained:

yc ¼
d
xp

: ð20Þ

The occurrence of contact between the beam and locking joint is determined by evaluating
variable yc at any time during the numerical integration of the system equations of
motion as

yc ¼
y� ya if y5ya;

yþ ybj j if y4� yb;

0 if � yb5y5ya:

8><
>: ð21Þ

Equation (14) has the following form:

f ¼ KðxpycÞ3=2 þ CTðycÞxp
’yyc; ð22Þ
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where the damping function TðycÞ is
TðycÞ ¼ ½ðyc þ ycj jÞ=2yc� exp½fðyc � ecÞ � yc � ecj jgðQ=ecÞ�; ð23Þ

in which ec ¼ e=xp:
The generalized force due to the impact between bodies i and j are

Qi ¼
0

0

N

2
64

3
75; Qj ¼ �

0

0

N

2
64

3
75; ð24Þ

where N is given by

N ¼

Ktðyþ ypreÞ if y > y1;

xpf þ Ktðyþ ypreÞ if y15y5ya;

�xpf þ Ktðyþ ypreÞ if � y24y4� yb;

Ktðyþ ypreÞ if yb5y5ya:

8>>><
>>>:

ð25Þ

3.3. THE DYNAMIC EQUATIONS OF THE SYSTEM

With flexible beam modelling in section 3.1 and the impact modelling in section 3.2, the
system of equations of motion can be established by the unified approach for the multi-
body systems. The equations of motion of the system may be written in matrix form as [19]

M UT
q

Uq 0

" #
.qq

k

( )
¼

Q

c

( )
; ð26Þ

where k is the Lagrange multiplier. The system state variable vector q; mass matrix M; and
vector of generalized force Q are defined as

q ¼ qT1 ; q
T
2 ; . . . ; q

T
nb

� �
; M ¼ diagðM1;M2; . . . ;MnbÞ; Q ¼ QT

1 ;Q
T
2 ; . . . ; Q

T
nb

� �
; ð27Þ

in which qi; Qi and Miði ¼ 1; 2; . . . ; nbÞ are, respectively, the generalized co-ordinate,
generalized force and the generalized mass matrix of the ith bodies. nb is the total rigid
bodies.
Figure 5. A slider-crank mechanism.
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In equation (26), Uq is the Jacobian matrix of the combined constraint equations

Uðq; tÞ ¼ 0 ð28Þ

and

c ¼ �ðUq ’qqÞq ’qq� 2Uqt ’qq� Utt: ð29Þ

The effect of the elastic force and that of the impact force can be accounted by inserting
the generalized forces of equations (13) and (24) into the right-hand side of equation (28)
in the integration.

4. NUMERICAL IMPLEMENTATION

The fourth order variable step Runge–Kutta algorithm and the generalized co-ordinate
partitioning approach [19] are used to solve the differential–algebraic equations (26). The
algorithms are implemented with the object-oriented C++ language.
Figure 6. Transverse deformation of the connecting rod: (a) results of this paper; (b) result of references
[20, 21].
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Generally, the axial dynamics of the flexible beam is of very high frequencies,
and it poses stiff problem with the rigid-body motions. But in many cases,
the axial deformation of a beam is negligible. In the numerical solution, a constraint
that eliminates the axial deformation of the beam is presented to decrease the stiffness
of the equations.

4.1. A CONSTRAINT FOR DECREASING THE STIFFNESS OF THE EQUATIONS OF MOTION

The longitudinal constraint for the element BiBj is defined as

U ¼ ðrj � riÞ � exi
� l ¼ 0; ð30Þ

where exi
is the unit vector along BiXi: The corresponding Jacobian Uq is

Uq ¼ ½�cos yi � sin yi � ðxj � xiÞsin yi þ ðyj � yiÞcos yi � cos yi � sin yi 0�; ð31Þ
Figure 7. The comparison of b with and without longitudinal constraint.

Table 1

Physical parameters of the system

Body no. Mass (kg) Inertia (kgm2) Length (m)

Central body 36 0�38 0�32
Beam 1 0�424 0�0226 0�8
Beam 2 0�424 0�0226 0�8
Beam 3 0�424 0�0226 0�8
Beam 4 0�382 0�0204 0�8
Joint 1 0�306 0�00025 0�04
Joint 2 0�306 0�00025 0�04
Joint 3 0�306 0�00025 0�04
Joint 4 0�306 0�00025 0�04
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where q is the generalized co-ordinate. The velocity equation and the acceleration equation
of the constraint are, respectively,

Uq ’qq  m ¼ 0; ð32Þ

Uq .qq  c ¼ 2ð ’xxj � ’xxiÞ’yyi sin yi � 2ð ’yyj � ’yyiÞ’yyi cos yi

þ ðxj � xiÞcos yi þ ðyj � yiÞsin yi

� �
’yy
2

i : ð33Þ

4.2. NUMERICAL EXAMPLE

The slider-crank mechanism [20] shown in Figure 5 is used to assess the validity of the
presented modelling method. The mechanism consists of the rigid crank OA of length La; a
connecting rod AB of uniform circular cross-section and length Lb; and a sliding block
Figure 8. Response of central rigid-body: (a) response of the displacement in the Y direction; (b) angular
response around its center of mass.
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located at B: The elastic connecting rod is assumed initially straight and simply supported
at the ends of pins. Transverse and axial deformations of the connecting rod in the plate
are allowed. The connecting rod is a steel bar. The slider-crack maintains a constant
angular velocity of 150 rad=s: Other parameters for this example are: mOA ¼ mB ¼
0�038 kg; mAB ¼ 0�076 kg; JOA ¼ 7�4� 10�5 kg m2; JAB ¼ 5:9� 10�4 kg m2 and JB ¼ 1�8�
10�6 kg m2: JOA; JAB and JB are, respectively, the moment of inertia about the center of
mass of bar OA; AB and sliding block B:

The transverse deflection of the connecting rod at its midpoint is represented by the
dimensionless parameter b; i.e., the ratio of the actual deflection to the length of the
connecting rod. Figure 6(a) depicts the results on the transverse deformation of the rod by
five segments and nine segments models respectively. For comparison, 6-mode solutions
from reference [20] and the results of reference [21] are also presented in Figure 6(b).

Figure 7 compares deflection considering longitudinal elasticity and using longitudinal
constraint (3-segments). The difference is negligible. The CPU time by using longitudinal
constraint is only 20% of that for considering longitudinal elasticity.
Figure 9. Response of the tip displacement: (a) response of beam 1; (b) response of beam 2.
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5. SIMULATION OF THE DEPLOYMENT SYSTEM

In this section, the simulation results on the flexible deployment system described in
section 2 are presented. The simulation results with and without clearance are presented.
The physical parameters of the system are presented in Table 1. These parameters are the
actual values from the physical model. The area moments of inertia of beams 1–3 are
2�71� 10�10 m4; and that of beam 4 is 2�52� 10�10 m4: In the simulation, each beam is
divided into four segments and each joint is divided into two rigid bodies connected by
locking joint. The elastic parameter Ei for the joints (see section 3.2) is 2�01� 1011 N=m2
Figure 10. The impulsive moment at joint 2: (a) with clearance; (b) without clearance.
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and Ej for the beams is 6�895� 1010 N=m2: The measured clearance of these joints is
ya ¼ yb ¼ 0�0052 rad: Other parameters are as follows mi ¼ mj ¼ 0:3; Q ¼ 3�0; e ¼ 0�5�
10�5 m; Ri ¼ 0�005 m;Rj4Ri; e ¼ 0�85 and k ¼ 3�2� 109 N=m: The angular stiffness of
the springs in the locking joints is 0�218 Nm=rad; and the pre-compressed angle ypre ¼
1�57 rad:

Figure 8(a) presents the response of the displacement of the central rigid-body in the Y

direction. Figure 8(b) presents the rotation of the central rigid-body around its center of
mass. As the beams on the two sides of the central rigid-body are not symmetric, the
central rigid-body oscillates during the deployment. As can be seen from the responses, the
Figure 11. The sketch of the experimental set-up.

Figure 12. The initial configuration and mark points.
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clearance in the joints decreases the vibration frequency of the system and the amplitude of
the central rigid-body. This indicates that presence of the clearance has softening effects on
the system stiffness. The effect on the amplitude of the central rigid-body might attribute
to the reduction in the interaction between the beams and the rigid-body by clearances.

Figure 9(a) and (b) presents the responses of the tip displacement of beams 1 and 2
respectively. It is also indicated that the clearance decreases the vibration frequency of the
system slightly.

Figure 10(a) and (b) presents impulsive moment of joint 2 by using the contract force
model with hysteresis damping. The results show that the peak value of the impulsive
moment in the joint locking is decreased due to clearance. However, multi-impacts
are observed in the post-locking responses when the clearances are presented, hence,
arising small sharp peaks in the contacting moments, see Figure 10(a).
Figure 13. The positioning system of linear CCD cameras.

Figure 14. Instrumentation block diagram.
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6. EXPERIMENT SET-UP OF THE DEPLOYMENT SYSTEM

6.1. EXPERIMENTAL SET-UP

The schematic diagram of the experimental set-up of the deployed system is shown in
Figure 11. The beams are suspended with light strings to alleviate the effect of gravity. The
length of the strings is 7m. For the response vibration induced by the deployment and
locking impact, the influence of the suspension can be ignored.

The parameters of the four flexible aluminum beams, locking joints and central rigid-
body are shown in Table 1. The stiffness of torsion spring in the locking joint is 0�218Nm/
rad. The clearance of the joint after locking is 0�0104 rad: Three LEDs are used to mark
measured points on the central rigid-body, joint 2 and the tip of beam 2, respectively, see
Figure 12.

6.2. NON-CONTACT THREE-DIMENSIONAL REAL-TIME POSITIONING SYSTEM

An optical measurement system, non-contact three-dimensional real-time positioning
system of multiple light-spots by three linear CCD cameras, is used for measuring
the response of deployment as shown in Figure 13. The imaging system consists of
cylinder lens. Three CCD cameras are sufficient to resolve the spatial co-ordinates of a
measured point. The fourth CCD is used as a means for compensating noises, see
Figure 14.

The linear CCD used in the system is TCD1206 with 2160 pixels. The measurement
system is calibrated with a high precision total station. The accuracy of positioning system
is 5mm in a 2000� 2000� 2000 mm3 space. This corresponds to a spatial resolution of
about 0.25% overall accuracy.

7. EXPERIMENTAL RESULTS AND CORRELATION

The simulated results are compared with the available experimental results at the three
points on the system. The angular response of the central rigid-body is shown in Figure 15.
Figure 15. Response of central rigid-body.
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The displacement of mark points 2 and 3 are compared in Figure 16. The mathematical
model presented in this paper captures the overall feature of the responses.

In the simulation, every flexible beam is divided into eight segments and the effects of
the suspension string are considered by incorporating the pendulum restoring forces of the
string.

The frequency response spectrum of the simulation and experimental results by FFT are
also presented in Figure 17. As observed, the frequency spectra from the results of eight
segments model coincide very well with that from experiments.
Figure 16. Response of displacement of the mark points 2 and 3: (a) point 2; ( b) point 3.



Figure 17. Frequency spectrum.
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8. CONCLUSIONS

In this paper, a hybrid finite segment/finite element approach is proposed for modelling
the large motion flexible beam in a deployment system. The method uses the finite
segments to describe the inertia of the large motion beam and enables a small deformation
theory for describing the elasticity of the beam in the relative co-ordinate systems.
Application of this method to a verification example yields comparable results with the
available literatures and the convergence of the method is satisfactory. Simulations also
show that the longitudinal constraint accelerates the numerical solution.

Together with the contact force model of the impact, this method is used to analyze the
deployment of a system with internal impact in the joints. The simulated results show that
the clearance decreases both the vibration frequency of the system and the peak value of
the impulsive moment of locking, as well as the vibration amplitude of the central rigid-
body. Also observed are the multi-impacts induced by the clearances in the joints.

The simulation with the presented methods demonstrates robustness in the experi-
mented deployment system. The correlation between the simulation and the experiment
shows that the mathematical model developed in this paper can give reasonable results for
the studied deployment system.
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